On the finite projective planes of order up to q4, q odd, admitting PSL(3,q) as a collineation group

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Projective Planes of Order 12 Do Not Have a Four Group as a Collineation Group

We have shown in [2] that the full collineation group of any projective plane of order 12 is a (2, 3) group. It is of interest to determine the structure of this (2,3} group. As a first step in that direction, we have shown in [3] that a non-Abelian group of order 6 cannot act as a collineation group on any projective plane of order 12. As a second step, we have shown in [4] that there is no pr...

متن کامل

Finite Laguerre Near-planes of Odd Order Admitting Desarguesian Derivations

From this definition it readily follows that a Laguerre plane of order n has n + 1 generators, that every circle contains exactly n + 1 points and that there are n3 circles. All known models of finite Laguerre planes are of the following form. Let O be an oval in the Desarguesian projective plane P2 = PG(2, pm), p a prime. Embed P2 into threedimensional projective space P3 = PG(3, pm) and let v...

متن کامل

On projective planes of order 12 with a collineation group of order 9

In this paper, we prove that if π is a projective plane of order 12 admitting a collineation group G of order 9, then G is an elementary abelian group and is not planar.

متن کامل

On collineation groups of finite planes

From the Introduction to P. Dembowski’s Finite Geometries, Springer, Berlin 1968: “ . . . An alternative approach to the study of projective planes began with a paper by BAER 1942 in which the close relationship between Desargues’ theorem and the existence of central collineations was pointed out. Baer’s notion of (p, L)–transitivity, corresponding to this relationship, proved to be extremely f...

متن کامل

Collineation Groups Which Are Primitive on an Oval of a Projective Plane of Odd Order

It is shown that a projective plane of odd order, with a collineation group acting primitively on the points of an invariant oval, must be desarguesian. Moreover, the group is actually doubly transitive, with only one exception. The main tool in the proof is that a collineation group leaving invariant an oval in a projective plane of odd order has 2-rank at most three.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Innovations in Incidence Geometry: Algebraic, Topological and Combinatorial

سال: 2008

ISSN: 2640-7345,2640-7337

DOI: 10.2140/iig.2008.6.73